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Abstract

In the present paper, the in¯uence of material substructures and of the inertia on the evolution of junctions among

coherent discontinuity surfaces is discussed within the setting of multi®eld theories. An evolution equation for the

junction is deduced in addition to the ones for the interfaces. The presence of substructures (or microstructures) within

the body is evaluated through order parameters. Substructural interactions are considered and need to be balanced. The

case in which such interactions can be decomposed into self-forces and microstresses is dealt with. Finally, the interfaces

are endowed by peculiar structure: line stresses and microstresses are considered, as well as line substructural self-

forces. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Preliminary remarks

Junctions among coherent interfaces are recurring phenomena in solids. Grains meet each other; mix-
tures of immiscible ¯uids (e.g., the suspension of oil in water) or of di�erent solid phases exhibit junctions.
Typical examples in solids are X-interfaces between austenite and martensite, 1 or junctions arising in long-
period superstructures in Al5Ti3, r-Al2Ti and Al3Ti (L12-type) alloys (e.g., Nakano et al., 1999). In metals,
at junctions, atoms are crowded in a geometry in which the minimum of the energy is greater than the one
on the geometry of the bulk. So, junctions are endowed by an excess of energy (a line energy, in three-
dimensional bodies). Such an energy, free energy, may be evaluated experimentally, by using calorimetry
devices, or numerically. When phase-transitions occur within the body, the junctions move according to the
evolution of the interfaces determining them. The material surrounding the interface exerts a force on it,
which can drive or obstruct the interface itself. Such an interaction, called also con®gurational force, is
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expressed through EshelbyÕs tensor (Eshelby, 1975) whose validity in non-conservative setting has been
proven by Gurtin (1995) 2 in the case of simple material. GurtinÕs argument is substantially based on the
requirement of the invariance of the power under re-parameterization of the interface and on an appro-
priate version of the second law.

In 1999, I indicated some elementary corollaries to GurtinÕs theory within the setting of multi®eld
theories describing the in¯uence of the microstructure (or substructure) of the material on the gross me-
chanical behavior of the body (Mariano, 2000). The presence of such substructures is evaluated by as-
signing order parameters to each material patch. They are elements of some manifold M and represent the
geometrical model of the substructure itself. Basically, they are considered as observable quantities. So,
interactions must be associated to them. The representation of such interactions depends on the geometrical
properties of M, in particular on the possibility of de®ning on the manifold a physically signi®cant con-
nection (Capriz, 1985, 1989, 2000), i.e. a manner of constructing covariant gradients.

When such a connection exists, the substructural interactions may be decomposed into microstresses and
self-forces. In this context, the explicit expression of Eshelby tensor must be augmented by an appropriate
product of the covariant gradient of the order parameter with the microstress, and the result of the product
is a second-order tensor, whatever the tensor rank of the order parameter is.

This modi®ed Eshelby tensor may be a useful tool even for evaluating the behavior of interfaces or
cracks within the setting of direct models of plates and shells.

An analogous result may be considered for the surface Eshelby stress. It can be de®ned when surface
stress measures are de®ned on the discontinuity surfaces, considered like thin domains capable to su�er
shear.

Simha and Bhattacharya (1998) have studied the expression of con®gurational forces acting on junctions
in two-dimensional simple bodies. Their result includes terms representing limiting values at the junction of
the interactions in bulk and interfaces surrounding the junction. Their work suggests to develop an anal-
ogous analysis within the context of multi®eld theories on the basis of the quoted modi®ed expressions of
bulk and interfacial Eshelby tensors.

This is the simple goal of the present paper. The in¯uence of inertial e�ects is also studied.
As in Simha and Bhattacharya (1998), the two-dimensional case is considered. It is the simplest one

and allows one to underline clearly the contribution of microstresses and self-forces (relevant to the
material substructures) to the expression of con®gurational force driving the junction during phase tran-
sitions.

The result within the setting of multi®eld theories presented here allows to analyze, among other things,
the behavior of plane junctions among interfaces in directed models of plates (see, e.g., Antman, 1995)
made of materials undergoing phase transitions, as for example shape memory alloys.

The three-dimensional case will be presented later. Technically, it is more di�cult than the two-di-
mensional one. The junction is line endowed not only by line tension and shear but also by an additional
line microstress and line self-force. Such additional generalized line measures of interaction enter in the
general expression of con®gurational forces acting at the junction.

Conceptually, the passage from the two-dimensional to the three-dimensional case implies another step
in understanding the behavior of junctions. By inspection of the sole balance equations at the junction
(involving both the line measures of interactions and the limiting contributions of bulk and surface ones), in
fact, it is possible to prove the possibility for the line free energy to assume negative values. This is in accord
to GibbsÕ conjecture on the energetic behavior of junctions. This could also have consequences on the
analysis of the stability of grain substructures at junctions.

2 Detailed analyses of the applications of Eshelby tensor in various physical circumstances can be found in (Maugin and Trimarco,

1992, 1995).
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Remarks on the notation: In the following, if A is an �n� 1�-covariant and m-contravariant tensor and B
is an n-covariant and �m� 1�-contravariant tensor, the product A � B furnishes a 1-covariant and 1-con-
travariant second-order tensor, i.e. �A � B�v � w, where v is a vector and w a covector. Moreover, in the
case in which A is �n� 1�-covariant and m-contravariant and B is n-covariant and m-contravariant tensor,
the product A�� B furnishes a covariant vector as result. Additionally, w � v � w v.

2. Con®gurations

As anticipated in Section 1, to each material patch P, the pair �x;u� is associated. x is the placement
within the Euclidean space E (which is considered two-dimensional in the present context). u is the order
parameter, a n-covariant, m-contravariant tensor belonging to M. It is the geometrical model of the ma-
terial substructure. Typical examples are the following:
· u(á) may be a scalar-valued ®eld de®ned on the whole body. So, the order parameter may represent the

void volume fraction in porous materials (Nunziato and Cowin, 1979), the volume fraction of a material
specie in liquid or solid mixtures, and so on.

· u may take values in the projective plane and be a representation of the orientation of straight molecules
in nematic liquid crystals or in smectics (Ericksen, 1962; Capriz, 1995).

· u may be a second-order symmetric tensor. So, it can represent the local deformation of big molecules
(Mindlin, 1964) within an indistinct matrix or it can be the second-order approximation (the dipole one)
of the microcrack density distribution in microcracked bodies (Mariano and Augusti, 1998).

· The whole range of direct models of structural elements such as plates, shells or rods (Antman, 1995;
Villaggio, 1997; Ericksen and Truesdell, 1958) is a collection of special cases of multi®eld theories.
Throughout the paper, M will be considered ®nite dimensional and paracompact but, of course, models

in which M is in®nite dimensional are possible, as in the case in which, e.g., an entire distribution on some
set of directions is assigned to each material patch.

In any case, with these premises, the physical con®guration of the body B is given by mapping K de®ned
by

K : B! E2 �M; �2:1�

�B 3�P 7!K �x;u�; �2:2�

KE2 B� � � B is the apparent con®guration. The mapping KE2 is an homeomorphism.
Of course, for every P belonging to B, x P� � � KE2 P� �;u P� � � KM P� �. Given two arbitrary con®gura-

tions, say K1 and K2, it is assumed that the mapping K � K2 � Kÿ1
1 is continuous and piecewise continuously

di�erentiable.
Take, at this point, a reference apparent con®guration B and consider it endowed by an atlas of co-

ordinates {X}. In particular, I assume that B is a ®nite union of ®t regions in NollÕs and VirgaÕs sense; 3

namely B is the ®nite union of bounded sets of E2 which are regularly open 4 and possess ®nite perimeter of
zero volume measure.

Given a point X on B, its current placement is given by x X� � � KE2 X� �, and it is assumed that KE2 is
orientation preserving, namely that det F > 0, where F is the gradient of deformation.

3 See Noll and Virga (1988) for a detailed explanation of the principal properties and of the role of ®t regions in mechanics.
4 A set of the Euclidean space is called ``regularly open'' when it coincides with the interior of its closure.
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A motion of the body will be described by ®elds

x �; �� � : B� �0; d� ! E2; �2:3�

u �; �� � : B� �0; d� !M �2:4�
in a way so that the current position of a particle X 2 B at time t 2 �0; d� is given by x�X; t�, while the
current value of the order parameter is u�X; t�.

So, velocities _x and _u may be de®ned and Vel indicates the space of pairs _x; _u� �. Among all the possible
velocity ®elds, the rigid ones play a special role in the following developments. In order to de®ne them,
consider a time-parameterized family of rotations represented through their characteristic vector, namely
q(t), the rigid velocity _xrig of the placement x�X; t� is given by

_xrig � c�t� � _q� �xÿ xc�; �2:5�
where c(t) is the translation velocity and xc the position of the center of rotation.

After a rotation, the order parameter can be expressed by series expansion as

uq � u X� � � duq

dq

����
q�0

q� o� qj j2�: �2:6�

Time derivative of Eq. (2.5) implies (neglecting higher order terms)

_uq �
duq

dq

����
q�0

_q � a _q; �2:7�

where duq=dq q�0

�� � a, obviously.
Eqs. (2.4) and (2.6) characterize completely the rigid body velocity ®elds. Assuming the possibility of

de®ning the covariant gradientru (herer is the gradient with respect to X), in the following J1will indicate
the set whose typical elements are of the type (x, F, u, Ñu). While J1(Vel) the set whose typical elements are
of the type � _x, _F, _u, r _u�.

The remarks presented up to this point about con®gurations may be substantially adapted to every
ambient Euclidean space (one, two or three dimensional). Some special choices, which are relevant to the
situation studied here, need to be speci®ed.

As declared previously, the apparent reference con®guration B is two dimensional. I assume that B is
divided into N sub-regions Bi by N open regular curves Ci de®ned by functions

ri : �0; s�� ! B; 0 < s�i <1 �2:8�
such that

jri;sj � 1 8s 2 �0; s�i �; �2:9�

ri;s�~s� 6� 0 8~s 2 0; s�i
� �

; �2:10�

ri�s�i � � J; �2:11�
ri;s and ri;ss are linearly independent. Each Bi is a ®t region.

It is worth noting that in each Bi, the nature of the order parameter u is the same. No mixture among
di�erent types of substructures are considered.

In Eq. (2.11), J represents the junction, which is (in the present case) a point in the plane and belongs (as
an assumption) to the interior of B.

The tangent ®eld ti to each Ci is given by
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ti � ri;s; �2:12�
while the curvature vector hi is given by

hi � ri;ss �2:13�
and the Gaussian curvature k by

ki � hi � ni; �2:14�
ni being the normal to Ci.

In the following, I will consider the curves Ci as discontinuity curves for some ®eld. Indicated with e
arbitrarily, one of these ®elds, it is assumed e 2 Cn B nSN

i�1 Ci

ÿ �
, for appropriate 5 n. The limiting values of

e at each curve (indicated with e� and eÿ) are de®ned by

e�i � lim
e!0
�x� eni; t�; �2:15�

where e is a real number.
The jump [e]i at the curve is thus given by

�e�i � e��i� ÿ eÿ�i�: �2:16�
The following relation holds true: �e1e2� � �e1�he2i � he1i�e2�, where hei � 1

2
e� � eÿ� �:

I assume that all ®eld su�ering jumps at Ci, for all choices of ``i'', considered in the sequel of the paper,
have ®nite jumps and they may be eventually singular at the junction only.

Moreover, such discontinuity curves are considered as coherent, i.e. not only

�F�i�Iÿ ni 
 ni� � 0; �2:17�
where I is the second-order unit tensor, as in the classical case of coherent discontinuity surfaces in simple
materials (Gurtin, 1993a), but also

�ru�i�Iÿ ni 
 ni� � 0: �2:18�
Of course, Eqs. (2.17) and (2.18) implies F�i �Iÿ ni 
 ni� � Fÿi �Iÿ ni 
 ni� and �ru��i �Iÿ ni 
 ni� �

�ru�ÿi �Iÿ ni 
 ni�; so, F will indicate in the following indi�erently F�i �Iÿ ni 
 ni� or Fÿi �Iÿ ni 
 ni� and N
indi�erently �ru��i �Iÿ ni 
 ni� or �ru�ÿi �Iÿ ni 
 ni�.

By coming back to e, now, since e can be singular at the junction, some technically clever devices need to
be used in applying the Gauss theorem to the divergence of e.

To explain this claim, consider a disc D* of radius R, centered at J and included in B, i.e. D� � B, and
another disc Dr of radius r < R centered at J.

The integral of Div e on D� can be de®ned, when e is a vector ®eld 6, as 7Z
D�

Div edA�def
lim
r!0

Z
D�nDr

Div edA: �2:19�

Now, the Gauss theorem impliesZ
D�nDr

Div edA �
Z

oD�
e �mdlÿ

X�N

i�1

Z
Ci\ D�nDr� �

e� �i � ni dlÿ
Z

oDr

e �mdl; �2:20�

5 In the following, it will be only necessary to consider n equal to 1 or, at most, to 2.
6 For higher-order tensor rank ®elds, Eq. (2.18) should hold for single components.
7 In the sequel of the paper, integrals on domains containing in their interior the junction must be considered in the sense of Eq.

(2.19).
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where m is the normal to oD� [ oDr. Thus, letting r to zero, the following relation holds true:Z
D�

DivedA �
Z

oD�
e �mdlÿ

X�N

i�1

Z
Ci\D�

e� �i � ni dlÿ lim
r!0

Z
oDr

e �mdl: �2:21�

Moreover, I assume that all ®elds considered in the sequel of the paper have su�ciently degree of
smoothness to assure the existence of the limit, limr!0, of some integrals on Dr or its boundary.

Eq. (2.21) is the basic tool for deducing balance equations from the general expression of the power
performed by interactions associated to both placement and order parameter ®elds.

Note that where the discontinuity lines Ci move within B with normal velocity Ui (it will be de®ned in
the following) then, by the Hadamard theorem,

� _x��i� � ÿUi F� ��i�ni; �2:22�

� _u��i� � ÿUi ru� ��i�ni: �2:23�
Obviously, when Ui � 0 the velocity ®elds _x and _u are continuous across the ith line.

3. Balance of standard interactions

As stated by Eq. (2.1), the order parameter u is considered as an observable quantity. An observer makes
two di�erent ideal measures to recognize both the placement and the microstructure of each material patch.

Moreover, interactions should be added to each measurement because they are related to di�erent
``kinematical'' or ``con®gurational'' mechanisms. Such interactions can be evaluated through their con-
tribution to the overall power performed during mechanical processes.

The power P is a real functional de®ned on J1(Vel); in particular, the power performed on a part 8 B� of
B is given by a mapping

PB� : J1�Vel� ! R; �3:1�
which is decomposed into external and inner contributions, Pext and Pint, respectively:

P � Pext ÿPint: �3:2�
Now, a problem is the explicit representation of Pext and Pint.
Since � _x, _F, _u, r _u� is the typical element of J1(Vel), it is necessary to consider measures of interaction

acting on each component of � _x, _F, _u, r _u�. In particular, the following measures of interactions are
considered:

Interactions on B�

(a) External interactions relating B� with the surrounding environment in which is contained including
the rest of the body

b bulk forces expending power on _x (e.g., gravitational forces)
b bulk ``forces'' expending power on _u (electromagnetic ®elds on microstructures)
t boundary traction expending power on _x (tension)
s boundary generalized ``traction'' expending power on _u (generalized tension)

(b) Inner interactions
s zero stress
T Piola±Kirchho� stress tensor

8 With the term ``part'' I indicate a subset of B, which is also a ®t region.
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z self-forces
S microstress

Interactions on
SN

i�1 Ci \ oB�

(c) External interactions
n�i� traction at Ci \ oB�

f�i� generalized traction at Ci \ oB�

(d) Inner interactions
T�i� line stress on Ci (vector quantity)
Z�i� line self-force on Ci (tensor quantity of the same rank of u)
S�i� line microstress on Ci (tensor quantity of the same rank of u)

A tetrahedron argument, analogous to the classical one stating that

Tm � t at oB� �3:3�
allows us to write

Sm � s at oB�: �3:4�
Moreover, it is necessary that the following equalities hold true at the intersection of each line of dis-

continuity with the boundary of B�:

T�i� � n�i� at Ci \ oB�; �3:5�

S�i� � f�i� at Ci \ oB�: �3:6�
Now, consider a part B� of B containing the junction in its interior; Pext and Pint have the following

form:

Pext
B� �

Z
B�
�b � _x� b � _u�dA�

Z
oB�
�t � _x� s � _u�dl�

X�N

i�1

�n�i� � _x�i � n�i� � _u�i �
�����
oB�\Ci

; �3:7�

Pint
B� �

Z
B�
�s � _x� T � _F� z � _u�S � r _u�dA�

X�N

i�1

Z
B�\Ci

�T�i� � _Fi � S�i� � _Ni � Z�i� � _u�i �dl

�
X�N

i�1

Z
B�\Ci

�hTiini � � _x�i � hSiini � � _u�i�dl: �3:8�

To derive balance equations from the explicit expression of the power, it is assumed:
(A1) PB� � 0, for every choice of B� and of the velocity ®elds _x and _/;
(A2) Pint

B� � 0, for every choice of B� and of rigid velocity ®elds.
Some analytical calculations need to be developed to be able to apply A1 to P. Insertion of Eqs. (3.3)±

(3.8) into Eq. (3.2) and the use of Gauss theorem lead to

PB� �
Z
B�
� b� ÿ s�Div T� � _x� b� ÿ z�DivS� � _u�dA�

X�N

i�1

Z
B�\Ci

� T� ��i�ni

�
� @sT�i�� � _x�i

� �S� ��i�ni ÿ Z�i� � @sS�i�� � _u�i
�

dl� lim
r!0

Z
oDr

�Tm � _x�Sm � _u�dl

� lim
r!0

X�N

i�1

T�i� � _x�i
�

�S�i� � _u�i
����

B�nD� r

ÿ �
\oDr

ÿ �
\Ci

: �3:9�
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Of course, in Eq. (3.9), the disc Dr has been chosen as in Section 2 to be fully contained in B� in a way
such that Dr \ oB� �£.

Note that, since the velocity ®elds _x and _u are considered to be not singular at the junction, the following
relations hold true:

lim
r!0

Z
oDr

�Tm � _x�Sm � _u�dl � lim
r!0

Z
oDr

Tmdl
� �

� _xJ � lim
r!0

Z
oDr

Smdl
� �

� _uJ; �3:10�

lim
r!0

XN

i�1

T i� � � _x�i
�

� S i� � � _u�i
������

B�nD� r

ÿ �
\oDr

ÿ �
\Ci

� lim
r!0

XN

i�1

T i� �

�����
��B�nD� r�\oDr�\Cii

0@ 1A � _xJ

� lim
r!0

XN

i�1

S�i�

�����
��B�D� r�\oDr�\Cii

0@ 1A � _uJ; �3:11�

where _xJ is the velocity ®eld calculated at the junction and _uJ is the time rate of the order parameter at the
junction itself.

Thus, taking into account Eqs. (3.10) and (3.11), A1 implies the following balance equations:

bÿ s�Div T � 0 in B; �3:12�

bÿ z�DivS � 0 in B; �3:13�

T� ��i�ni � @sT�i� � 0 on Ci; �3:14�

S� ��i�ni ÿ Z�i� � @sS�i� � 0 on Ci; �3:15�

lim
r!0

Z
oDr

Tmdl

0@ �
XN

i�1

T�i�

�����
B�nD� r

ÿ �
\oDr

ÿ �
\Ci

1A � 0 at J; �3:16�

lim
r!0

Z
oDr

Smdl

0@ �
XN

i�1

S�i�

�����
B�nD� r

ÿ �
\oDr

ÿ �
\Ci

1A � 0 at J: �3:17�

The consequences of A2 can be deduced taking into account thatZ
B�
�s � _x� T � _F� z � _u�S � r _u�dA �3:18�

should vanish, for every choice of B�, and for every choice of rotational velocity _q, where _x and _u are
chosen according to Eqs. (2.5) and (2.7).

The substitution of Eqs. (2.5) and (2.6) into Eq. (3.18) and the application of A2 lead to 9

s � 0; �3:19�

9 In Eq. (3.20), the superscript ``t'' means transposition de®ned on tensors of rank greater than or equal to 2 as follows:
Atv � vA:
For every vector v and tensor A. Of course, At coincides with AT when A is a second-order tensor.
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eTFT � az� �ra�tS: �3:20�
Of course, if T and S are not singular at the junction (as will be assumed in the following) Eqs. (3.16) and

(3.17) reduce to

lim
r!0

Z
oDr

Tmdl�
XN

i�1

T�i� J

��� � 0 at J; �3:21�

lim
r!0

Z
oDr

Smdl�
X�N

i�1

S�i� J

��� � 0 at J: �3:22�

4. Balance of con®gurational interactions

The discontinuity lines move within the body when phenomena like phase transitions occur. In this case,
the representation function of each line is of the type r�s;t�, i.e. it depends on time, so that the velocity of
the line in the plane is given by

u � @tr: �4:1�
Note that only the normal component of u to C

U � u � n �4:2�
is intrinsic. 10

The movement of the lines C implies the need of considering B� as varying under time; so B� � B��t�.
Moreover, B� can be also chosen in a way such that its boundary oB� can be parameterized by arc length u.
If X � X̂ u; t� � represents oB��t�,

v � @tX̂ u; t� � �4:3�
is the velocity of the boundary oB� whose normal component is given by

V � v � n: �4:4�
When B� is deformed, the velocity of the boundary is given by

�v � x̂ X u; t� �; t� �
�

� _x� Fv: �4:5�
An analogous relation holds true for the time rate of the order parameter

Dtu � û X u; t� �; t� �
�

� _u� ru� �v: �4:6�
From analogous calculations, the current velocities at the interfaces C are given by

�u � _x� � F�u � h _xi � hFiu; �4:7�
~Dtu � _u� � ru� ��u � h _xi � ruh iu: �4:8�

10 In Eq. (4.2) the subscript ``i'' is omitted because Eq. (4.2) is referred to each Ci.
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The kinematics of discontinuity lines (including the junction) just described is a mechanism independent
of the overall behavior. Such a relative motion with respect to the rest of the body implies interactions
because the rest of the body can obstruct or drive the interface and the junction. In addition, the junction is
assumed to be only one point during the whole evolution.

The interactions arising during the evolution owing to the change under time of a part of the reference
con®guration are also called con®gurational forces (Nabarro, 1985; Ericksen, 1995).

I will consider the following con®gurational measures of interaction:
(a) Bulk con®gurational forces

P modi®ed Eshelby tensor
g inner con®gurational body force
e external con®gurational body force

(b) Surface con®gurational forces
ci line con®gurational stress at Ci

fi inner line con®gurational force at Ci

(c) Con®gurational force at the junction
dJ

I assume that
· P has ®nite jump at each Ci and can be singular at J,
· g and e are such thatZ

B��t�
g
ÿ � e

�
dA � lim

r!0

Z
B��t�nDr�t�

�g� e�dA 8t: �4:9�

The same property holds true for f, soZ
Ci�t�\B��t�

fi dl � lim
r!0

Z
Ci�t�\ B��t�nDr�t�� �

fi dl 8t: �4:10�

· c is not singular at J.
Since g and f are inner forces associated to the independent kinematics of the interfaces, they do not

perform explicit power except in the case in which the power itself is evaluated by an external observer not
®xed, rather migrating with constant velocity v� and evaluating the position of the moving reference control
volume B��t�. The same situation occurs for e.

Indicating by W ��B��, the power performed on B��t� by all interactions with respect to the migrating
observer just introduced, W ��B�� can be expressed as

W ��B�� �
Z

oB��t�
�Tm � �v�Sm � Dtu� Pm � v� � v���dl�

Z
B��t�
�b � _x� b � _u�dA

�
Z
B��t�

g
ÿ � e

� � v�dA�
X�N

i�1

�T�i� � �ui � S�i� � ~Dtu�
�����
Ci�t�\oB��t�

�
X�N

i�1

Z
Ci�t�\B��t�

f�i� � v�dl

�
X�N

i�1

c�i� � u�ÿ � v��������
Ci�t�\oB��t�

� dJ � v�: �4:11�

W ��B�� (where Eqs. (3.3)±(3.6) have been considered) accounts for the power performed by g, e and dJ on
the velocity v� of the material observer evaluating B��t�.
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Of course, to be physically consistent, W ��B�� should be independent of the choice of the velocity of the
material observer. 11 Such a requirement implies that

Z
oB��t�

Pm dl

 
�
Z
B��t�
�g� e�dA�

X�N

i�1

Z
Ci�t�\B��t�

f�i� dl�
X�N

i�1

c�i� Ci�t�\oB��t�

��� � dJ

!
� v� � 0: �4:12�

From Eq. (4.12), since v� is arbitrary, the integral con®gurational balance follows:Z
oB��t�

Pmdl�
Z
B��t�
�g� e�dA�

X�N

i�1

Z
Ci�t�\B��t�

f�i� dl�
X�N

i�1

c�i� Ci�t�\oB��t�

��� � dJ � 0: �4:13�

Now, from the Gauss theorem,Z
oB��t�

Pmdl �
Z
B��t�

Div PdA�
X�N

i�1

Z
Ci�t�\B��t�

P� ��i�ni dl� lim
r!0

Z
oDr�t�

Pmdl; �4:14�

X�N

i�1

c�i� Ci�t�\oB��t�

��� �
X�N

i�1

Z
Ci�t�\B��t�

@sc�i� dl� lim
r!0

X�N

i�1

c�i� Ci�t�\Dr�t�

���
�
X�N

i�1

Z
Ci�t�\B��t�

@sc�i� dl�
X�N

i�1

c�i� J

��� : �4:15�

Eq. (4.15) is a consequence of the previous assumption that c is not singular at the junction.
Since Eq. (4.13) should be valid for every choice of the control volume B�, insertion of Eqs. (4.14) and

(4.15) in Eq. (4.13) leads to the following localized balance of con®gurational forces, namely

DivP� g� e � 0 in B; �4:16�

�P��i�ni � fi � @sc�i� � 0 on Ci; �4:17�

lim
r!0

Z
oDr�t�

Pmdl�
X�N

i�1

c�i� J

��� � dJ � 0 at J: �4:18�

5. Con®gurational force at the two-dimensional junction

Now, the determination of the explicit expressions of con®gurational interactions needs to be made.
Such expressions can be done in terms of standard bulk and surface stresses, free energies and geometrical
ingredients like the deformation gradient and the gradient of the order parameter.

The result follows from the exploitation of an isothermal expression of the second law of thermo-
dynamics stating that

11 The requirements of arbitrary choices of the velocity ®elds are considered here to be valid in the absence of relativistic e�ects, i.e.

when problems related to the existence of a limit speed of transfer of information can be neglected.
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d

dt
free energy in B� t� �f g ÿ W B�� �6 0: �5:1�

Here, W �B�� is the power expressed with reference to a ®xed material observer �v� � 0�; so, it has the
following form:

W �B�� �
Z

oB��t�
�Tm � �v�Sm � Dtu� Pm � v�dl�

Z
B��t�
�b � _x� b � _u�dA

�
X�N

i�1

�T�i� � �ui � S�i� � ~Dtui � c�i� � ui� Ci�t�\oB��t�

��� : �5:2�

On the basis of the experimental physical evidence, a bulk free energy density w and a line free energy /
should be considered. So that, the time rate of the free energy has the following explicit expression:

d

dt
ffree energy in B� t� �g � d

dt

Z
B��t�

wdA� d

dt

Z
Ci�t�\B��t�

/dA: �5:3�

In particular, I assume that
· w is smooth on B nSN

i�1 Ci, su�ers ®nite jump at each Ci and could be singular at the junction;
· / is smooth on

SN
i�1 Ci

ÿ �
.

Now, the standard transport theorem states that

d

dt

Z
B� t� �nDr t� �

wdA �
Z
B� t� �nDr t� �

_wdA�
Z

oB� t� �
wVdlÿ

X�N

i�1

Z
Ci t� �\ B� t� �nDr t� �� �

w� � i� �Ui dlÿ
Z

oDr t� �
wVdl:

�5:4�
Taking the limit r ! 0 and considering previous assumptions, the following equation holds true:

d

dt

Z
B� t� �

wdA �
Z
B� t� �

_wdA�
Z

oB� t� �
wVdlÿ

X�N

i�1

Z
Ci t� �\B� t� �

w� � i� �Ui dlÿ lim
r!0

Z
oDr t� �

wVdl: �5:5�

Analogous calculations on the basis of standard transport theorems for integrals calculated on lines
evolving under time furnish

d

dt

Z
Ci�t�\B��t�

/dl �
Z

Ci�t�\B��t�
/0
ÿ ÿ /kU

�
dl� / u�i� � ti

ÿ �
Ci�t�\oB��t�

��� ÿ /�u�i� � ti�
��
J
: �5:6�

In Eq. (5.6) /0 represents the normal time derivative of /, following the trajectories. 12 To simplify
calculations, we now set

W1�B�� �
Z

oB��t�
�Tm � �v�Sm � Dtu� Pm � v�dl; �5:7�

W2�B�� �
X�N

i�1

�T�i� � �ui � S�i� � ~Dtui � c�i� � ui� Ci�t�\oB��t�

��� : �5:8�

The insertion of Eqs. (4.5) and (4.6) in Eq. (5.7) and of Eqs. (4.7) and (4.8) in Eq. (5.8) leads, respectively, to

12 More precisely, /0 is de®ned as follows: /0�x; t� � d/ x b� �; b� �=db b�t
�� ; where x�b� satis®es dx=db � U x b� �; b� �:
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W1�B�� �
Z

oB��t�
�Tm � _x�Sm � _u� P

ÿ � FTT�rut �S�m � v�dl; �5:9�

W2�B�� �
X�N

i�1

�T�i� � h _xii � S�i� � huii � �c�i� � hFTiiT�i� � hrutii �
�

S�i�� � u� Ci�t�\oB��t�

��� : �5:10�

For physical reasons, W1(B�) must be independent of the kind of parameterization of the boundary of
B��t�. In Eq. (5.9), the term depending of the parameterization is the product �P� FTT�rut �S�m � v
because only the normal component of v is intrinsic. As a consequence, it is necessary that

P
ÿ � FTT�rut �S�m � i � 0 �5:11�

for every vector i chosen to be tangent to oB�, i.e. �P� FTT�rut �S�m is purely normal; thus, it must be
expressed by

P� FTT�rut �S � xI; �5:12�
x being a scalar quantity and I, the unit second-order tensor. Thus, W1�B�� reduces to

W1�B�� �
Z

oB��t�
�Tm � _x�Sm � _u�dl�

Z
oB��t�

xVdl: �5:13�

Moreover, in Eq. (5.10), the term c�i� � hFTiiT�i� � hrutii �
�

S�i� is a vector quantity and can be decomposed
in its tangential and normal components to each Ci. Thus, omitting the index ``i'' (in this way, under-
standing that the calculations developed hold for each Ci, ``i'' ®xed), it follows that

c� hFTiT � hruti�� S � rt � ln: �5:14�
Now, since

hFTiT � FTT � hFin � T� �n; �5:15�

ruth i�� S � N t �� S � ruh in � S� �n; �5:16�
the con®gurational stress vector c may be expressed by

c � rt � �lnÿ FTT ÿ N t �� S; �5:17�
where

�l � lÿ Fh in � T ÿ ruh in � S: �5:18�
Thus, inserting Eq. (5.17) in Eq. (5.10) and once more using Eqs. (5.15) and (5.16), W2�B�� can be written

as

W2�B�� �
X�N

i�1

�r�i� t�i� � ui

ÿ �� �l�i�Ui � T�i� � �h _xii �Ui Fh i�i�n�i�� � S�i� � �h _uii �Ui ruh i�i�n�i��� Ci�t�\oB��t�

��� :

�5:19�
On each discontinuity line Ci, by applying the Gauss theorem,
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��l�i�Ui � T�i� � �h _xii �Ui Fh i�i�n�i�� � S�i� � �h _uii �Ui ruh i�i�n�i��� Ci�t�\oB��t�

���
�
Z

Ci�t�\oB��t�
@s��l�i�Ui � T�i� � �h _xi �U Fh in�i � S�i� � �h _ui �U ruh in�i�dl� ��l�i�Ui � T�i� � �h _xi

�U Fh in�i � S�i� � �h _ui �U ruh in�i� J

��� : �5:20�
Moreover, since �l � c � n,Z

Ci�t�\B��t�
@s��l�i�Ui�dl �

Z
Ci�t�\B��t�

U�@s�c�i�� � n�i� � c�i� � @sn�i��dl�
Z

Ci�t�\B��t�
��l�i�@sUi�dl; �5:21�

Z
Ci�t�\B��t�

@s�T�i� � �h _xi �UhFin�i�dl �
Z

Ci�t�\B��t�
�@sT�i� � h _xii � @sT�i� �UihFi�i�n�i� � T�i� � p0

�i�

ÿ k�i�F
T
�i�T�i� � t�i��dl; �5:22�Z

Ci�t�\B��t�
@s�S�i� � �h _ui �Uhruin�i�dl �

Z
Ci�t�\B��t�

�@sS�i� � h _uii � @sS�i� �Uihrui�i�n�i� � S�i� � q0
�i�

ÿ k�i�N t
�i�S�i� � t�i��dl; �5:23�

where

p0
�i� � @s�h _xi �UhFin�i � k�i�F

T
�i�T�i� � t�i�; �5:24�

q0
�i� � @s�h _ui �Uhruin�i � k�i�N t

�i� �
�

S�i� � t�i�: �5:25�
Of course, from Eqs. (5.24) and (5.25), it follows that pi � @sx�i and qi � @su�i at each discontinuity line.

Thus, by taking account of Eqs. (5.13), (5.19) and Eqs. (5.20)±(5.23), and also using the Gauss theorem
on the ®rst integral of Eq. (5.13), W �B�� can be written as

W �B�� �
Z

oB��t�
xVdl�

Z
B��t�
�T � _F� z � _u�S � r _u�dv� lim

r!0

Z
oDr

Tm � _xdl

�
X�N

i�1

Z
Ci�t�\B��t�

�l@sUi dl� lim
r!0

Z
oDr

Sm � udl�
X�N

i�1

ri�t � u�jCi�t�\oB��t�
� �

�
X�N

i�1

Z
Ci�t�\B��t�

Z � �h _ui �Uhruin�i dl�
X�N

i�1

Z
Ci�t�\B��t�

�@s c� � nUi dl

�
X�N

i�1

Z
Ci�t�\B��t�

c � @sn� �iUi dl�
X�N

i�1

Z
Ci�t�\B��t�

T � p0 dlÿ
X�N

i�1

Z
Ci�t�\B��t�

kiUiF
TT � t dl

ÿ
X�N

i�1

Z
Ci�t�\B��t�

�Tn � Fn��i�Ui dl�
X�N

i�1

Z
Ci�t�\B��t�

S � q0 dl

ÿ
X�N

i�1

Z
Ci�t�\B��t�

kiUiN t �� S � t dlÿ
X�N

i�1

Z
Ci�t�\B��t�

�Sn � �ru�n�iUi dl�
X�N

i�1

��l�i�Ui

� T�i� � �h _xii �UihFi�i�n�i�� � S�i� � �h _uii �Uihrui�i�n�i���jJ: �5:26�
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In this way, the dissipation inequality becomesZ
B��t�
� _wÿ T � _Fÿ z � _uÿS � r _u�dv�

Z
oB��t�

w� ÿ x�Vdlÿ
X�N

i�1

Z
Ci�t�\B��t�

Z � �h _ui

�Uhruin�dl�
X�N

i�1

/i� ÿ ri� t � u� �
Ci�t�\oB��t�

����� ÿ
X�N

i�1

Z
Ci�t�\B��t�

@sc� �i � niUi dl

ÿ
X�N

i�1

Z
Ci�t�\B��t�

ci � @sn� �iUi dlÿ lim
r!0

Z
oDr

�wV� Tm � _x�Sm � _u�dl�
X�N

i�1

Z
Ci�t�\B��t�

�/0
i

ÿ T � p0 ÿ S � q0 ÿ �l�i�@sUi�dlÿ
X�N

i�1

Z
Ci�t�\B��t�

�/ÿ FTT � t ÿ N t �� S � t��i�kiUi dl

ÿ
X�N

i�1

Z
Ci�t�\B��t�

w� ÿ Tn � FnÿSn � ru� �n� i� �Ui dlÿ
X�N

i�1

�/i ti �Ui� � � �l�i�Ui � T�i� � �h _xi

�U Fh in�i � S�i� � �h _ui �U ruh in�i�
�����
J

6 0: �5:27�

Since Eq. (5.27) must hold for every choice of the velocity ®elds U and t � u, it follows

w � x; �5:28�
r � /: �5:29�

As a consequence, the modi®ed expressions of con®gurational stresses are

P � wIÿ FTTÿrut �S; �5:30�
c � /t� �lnÿ FTT ÿ N t �� S: �5:31�

Expression (5.30) has been already deduced in Mariano (2000). In Eqs. (5.30) and (5.31), the terms
rut �S and N t �� S represent the contribution of the interactions on the substructure to con®gurational
stresses.

Note that such contributions are related only to the possibility of recognizing microstresses associated to
the order parameters. When microstresses are absent (owing to the absence of a connection by which ru is
de®ned in covariant way) the above mentioned contributions disappear. This is the case of internal variable
models 13 in which the thermodynamical a�nities associated to the internal variables do not perform ex-
plicit working and balance equations are not associated to them. In this last case the Eshelby tensor is not
modi®ed (P reduces thus to wIÿ FTT) and the internal variables in¯uences only the explicit expression of
the free energy.

In the general case of multi®eld theories, otherwise, expressions (5.29) and (5.30) holds in their complete
form.

Now, some addenda of Eq. (5.29) may be grouped separately in order to simplify them. In particular,
taking into account Eq. (5.30), set

K1 �
X�N

i�1

Z
Ci�t�\B��t�

�ni � P� � i� �ni � /
�
ÿ FTT � t ÿ N t �� S � t

�
i
ki � @sc� �i � ni � c � @sn� �i�Ui dl: �5:32�

13 See the standard model of Coleman and Gurtin (1967).
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Thus, considering that

@sn � ÿkt; �5:33�
it follows that

c � @sn � ÿ /
�
ÿ FTT � t ÿ N t �� S � t

�
k: �5:34�

Consequently, substituting Eq. (5.34) into Eq. (5.32) and taking account of the con®gurational balance
(4.17), K1 can be expressed as

K1 � ÿ
X�N

i�1

Z
Ci�t�\B��t�

f � n� ��i�Ui dl: �5:35�

To do other simpli®cations, consider that

T �UhFinjJ � T � hFivJ ÿ T � hFit�vJ � t�; �5:36�

S �UhruinjJ � S � hruivJ ÿ S � hruit�vJ � t�: �5:37�
Consequently, taking into account Eqs. (5.36), (5.37) and (5.31), the term in Eq. (5.32) associated with

the junction can be written asX�N

i�1

�/i ti �Ui� � � �l�i�Ui � T�i� � �h _xi �U Fh in�i � S�i� � �h _ui �U ruh in�i�
�����
J

�
X�N

i�1

�T�i� � �h _xi � hFivJ�i � S�i� � �h _ui � hruivJ�i�
��
J
�
X�N

i�1

�vJ � ci�
������
J

: �5:38�

Consider also that, the termZ
oDr

�wV� Tm � _x�Sm � _u�dl �5:39�

may be written asZ
oDr

�v � Pm� Tm � � _x� Fv� �Sm � � _u�ruv��dl: �5:40�

Moreover, since v is not singular at the junction and approaches vJ when r! 0,

lim
r!0

Z
oDr

v � Pm� �dl�
X�N

i�1

�vJ � ci�
��
J
� lim

r!0

Z
oDr

Pmdl

 
�
X�N

i�1

cijJ
!
� vJ � ÿdJ � vJ: �5:41�

As a consequence of previous developments, the mechanical dissipation inequality can be written asZ
B��t�
� _wÿ T � _Fÿ z � _uÿS � r _u�dv�

X�N

i�1

Z
Ci�t�\B��t�

f � n� ��i�Ui dlÿ
X�N

i�1

�T�i� � �h _xi � Fh ivJ�i

� S�i� � �h _ui � ruh ivJ�i�
���
J
� dJ � vJ �

X�N

i�1

Z
Ci�t�\B��t�

/0
�
ÿ T � p0 ÿ S � q0 ÿ �l@sU

ÿ Z � u�
ÿ �0

�
i
dlÿ lim

r!0

Z
oDr

�Tm � � _x� Fv� �Sm � � _u�ruv��dl 6 0: �5:42�
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Inequality Eq. (5.42) can be further reduced by considering that, to within terms of the type o(r),

lim
r!0

Z
oDr

�Tm � � _x� Fv��dl � �h _xi � hFivJ�
���
J
� lim

r!0

Z
oDr

Tmdl; �5:43�

lim
r!0

Z
oDr

�Sm � � _u�ruv��dl � �h _ui � hruivJ�
���
J
� lim

r!0

Z
oDr

Smdl: �5:44�

The proof of Eq. (5.43) can be found in Simha and Bhattacharya (1998, p. 2344); the one of Eq. (5.44) is a
simple adaptation of that.

Consequently, by using the balance (3.21) and (3.22),X�N

i�1

�T�i� � �h _xi � Fh ivJ�i � S�i� � �h _ui �UhruivJ�i�
���
J
� lim

r!0

Z
oDr

�Tm � � _x� Fv�

�Sm � � _u� �ru�v��dl

� �h _xi � hFivJ�jJ � lim
r!0

Z
oDr

Tm dl

 
�
X�N

i�1

T�i� J

��� !� �h _ui � hruivJ�jJ � lim
r!0

Z
oDr

Smdl

 

�
X�N

i�1

S�i� J

��� ! � 0: �5:45�

Taking Eq. (5.45) into account, since Eq. (5.42) must be valid for every choice of B�, the following
localized dissipation inequalities can be obtained, namely

_wÿ T � _Fÿ z � _uÿS � r _u6 0 in B; �5:46�

/0 ÿ T � p0 ÿ S � q0 ÿ Z � u�0 ÿ �l@sU� fU6 0 at C; �5:47�

dJ � vJ6 0 at J: �5:48�
Now, assume that the bulk free energy and the interfacial free energy have, respectively, the following

constitutive structures:

w � ŵ F;u;ru� �; �5:49�

/ � /̂ p; q; h;u�
ÿ �

; �5:50�
where h is the limiting crystallographic orientation of the interfaces and is such that h0 � @sU (Gurtin,
1993b).

By calculating the relevant time derivatives of w and / and inserting them into Eqs. (5.46) and (5.47), the
validity of Eqs. (5.46) and (5.47) for every choice of the velocity ®elds involved in their expressions implies

T � @Fw; z � @uw; S � @ruw; �5:51�

T � @p/; S � @q/; Z � @u�/; �5:52�

�l � @h/; �5:53�

ÿ f � n� �UP 0 at Ci; �5:54�

ÿdJ � vJ P 0 at J: �5:55�
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Now, the driving force at the ith interface dCi is given by

dCi � ÿfi � ni; �5:56�
while the driving force at the junction dJ is given by

dJ � ÿdJ: �5:57�
Consequently, the use of con®gurational balances (4.17) and (4.18) and the results Eqs. (5.30) and (5.31)

lead to

dC � n � wI
� ÿ FTTÿrut �S�n� /

ÿ ÿ FTT � t ÿ N tS � t�k� @s�l at Ci; �5:58�

dJ � lim
r!0

Z
oDr

wI
ÿ ÿ FTTÿrut �S�mdl�

XN

i�1

�/t � �lnÿ FTT ÿ N tS�i
���
J

at J: �5:59�

The dissipation inequalities (5.54) and (5.55) allow us to determine the evolution equations for the in-
terfaces and the junction from Eqs. (5.58) and (5.59). Since Eqs. (5.54) and (5.55) must be valid for every
choice of velocity ®elds U and vJ, in fact, dC and dJ need have structures of the form

dC � dC �� �U; �5:60�

dJ � d�J �; vJ
ÿ �

; �5:61�
where dC is a positive de®nite scalar function, given by a constitutive relation and d�J is a vector function,
given by a constitutive relation and such that d�J � vJ P 0.

In particular, a suitable choice for d�J is the following:

d�J � d�J �� �vJ; �5:62�
where d�J is a positive de®nite scalar function given by a constitutive relation.

Possible constitutive choices for dC and d�J are the following:

dC � d̂C p; q;u�; h
ÿ �

; �5:63�

dJ � d̂J p; q;u�; h
ÿ �

: �5:64�
Moreover, Eqs. (5.54) and (5.55) do not exclude a priori the possibility of including in dC and d�J rate

e�ects or higher-order gradient e�ects.
Finally, by using Eqs. (5.60) and (5.62), the evolution equations for the interfaces and the junction are

the following:

dCU � n � bwIÿ FTTÿrut �Scn� /
�
ÿ FTT � t ÿ N t �� S � t

�
k� @s�l at Ci; �5:65�

dJvJ � lim
r!0

Z
oDr

wI
ÿ ÿ FTTÿrut �S�mdl�

X�N

i�1

�/t � �lnÿ FTT ÿ N t �� S�i
���
J

at J: �5:66�

6. Inertial e�ects

When inertial e�ects are noticeable, the relevant expression of the modi®ed Eshelby's tensor can be
obtained by considering a mechanical dissipation inequality of the form
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d

dt
free energyf � kinetic energyg ÿ W �B��6 0: �6:1�

Here the term ``kinetic energy'' is given by

kinetic energy � 1
2
qj _xj � v�u; _u�; �6:2�

where q is the mass density of the bulk and v is the contribution to the kinetic energy associated to order
parameter u. In particular v �; �� � must be such that v �; 0� � � 0.

By following a procedure analogous to the one used previously, it is possible to determine the dynamic
counterpart of P, namely Pdyn (see Mariano (2000), for the complete proof). Pdyn is given by

Pdyn � w
�
� 1

2
qj _xj2 � v�u; _u�

�
Iÿ FTTÿrut �S: �6:3�

Note that the inertial contribution to the bulk con®gurational stress is given only by a spherical tensor,
namely 14

1
2
qj _xj2

�
� v�u; _u�

�
I: �6:4�

Moreover, if the surface con®gurational force f is decomposed in its inertial and non-inertial parts, fin

and fni respectively, fin has the following expression (Mariano, 2000, Eq. (4.88)) 15

fin � q� Fh i� _x�U�n� � ruth i _� @ _uv
� �

U� ÿ �v�u; _u�� at Ci: �6:5�
Now, by using Eqs. (6.3) and (6.5), Eqs. (5.57) and (5.58) can be written as follows:

dC � n � w
�h
� 1

2
qj _xj2

�
Iÿ FTTÿrut �S

i
n� /

�
ÿ FTT � t ÿ N t �� S � t

�
k� @s�l� q� Fh i� _x�U� � n

� � ruth i _� @ _uv
� �

U� � n; �6:6�

dJ � lim
r!0

Z
oDr

w
��
� 1

2
qj _xj2 � v�u; _u�

�
Iÿ FTTÿrut �S

�
mdl�

X�N

i�1

�/t � �lnÿ FTT ÿ N t �� S�i
���
J
:

�6:7�
The use of Eqs. (5.60) and (5.62) into Eqs. (6.6) and (6.7) leads to the relevant kinetic equations when

inertial e�ects are noticeable.

7. Neglecting deformations

When the macroscopic deformations are negligible, Eqs. (5.58) and (5.59) reduce to

dC � n � wI� ÿ rut �S�n� /
�
ÿ N t �� S � t

�
k� os l� ÿ ruh in � S� at Ci; �7:1�

dJ � lim
r!0

Z
oDr

wI� ÿ rut �S�mdl�
X�N

i�1

/t
�
� l� ÿ ruh in � S� ÿ N t �� S

�
i
jJ at J: �7:2�

14 Other inertial e�ects can be recognized in Eq. (4.16) where the inertial part of the external con®gurational force e is given by

ein � qFT�x�rut �� f @ _uv
ÿ �� ÿ @uvg (Mariano, 2000, Eq. (3.38)).

15 Here the Eq. (4.88) in Mariano (2000) is emended of a trivial print error in its last two lines.
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Note that the presence of microstructure within the body implies an articulate behavior of the interfaces
and the junction, even in absence of macroscopic deformations.

As a special case, consider a situation in which not only macroscopic deformations are neglected but also
· the order parameter is a scalar quantity (say it represents the volume fraction of a phase in some two

phase material),
· interfacial structure is neglected,
· the bulk Helmoltz free energy w is Ginzburg±LandauÕs-like, more precisely

w u;ru� � � 1
2
b ruj j2 � r u� �: �7:3�

In Eq. (7.3), r(�) is a double well coarse grained potential and b a material constant. The simplest ex-
pression of r(�) is given by

r u� � � a 1
ÿ ÿ u2

�2 �7:4�
with a some constant.

In this case, T, S, Z, �l, /, T vanish identically, the bulk microstress is a vector and is given by

S � bru; �7:5�
while the internal force z is scalar, namely

z � 4au u2
ÿ ÿ 1

�
: �7:6�

Finally, the driving forces are given by

dC � n � 1
2
b ruj j2

�h
� r u� �

�
Iÿ bru
ru

i
n; �7:7�

dJ � lim
r!0

Z
oDr

1
2
b ruj j2

��
� r u� �

�
Iÿ bru
ru

�
mdl: �7:8�

Note that the driving force at the junction is given by quantity having an expression analogous to the one
of RiceÕs integral.

In this case,

dC � d̂C q;u�; h
ÿ �

; �7:9�

dJ � d̂J q;u�; h
ÿ �

: �7:10�
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