INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 1243-1263

Coherent interfaces with junctions in continua with
microstructure

Paolo Maria Mariano *

Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma “‘La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy
Received 20 December 1999

Dedicated to my father, Luigi Mariano, painter, artist

Abstract

In the present paper, the influence of material substructures and of the inertia on the evolution of junctions among
coherent discontinuity surfaces is discussed within the setting of multifield theories. An evolution equation for the
junction is deduced in addition to the ones for the interfaces. The presence of substructures (or microstructures) within
the body is evaluated through order parameters. Substructural interactions are considered and need to be balanced. The
case in which such interactions can be decomposed into self-forces and microstresses is dealt with. Finally, the interfaces
are endowed by peculiar structure: line stresses and microstresses are considered, as well as line substructural self-
forces. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Preliminary remarks

Junctions among coherent interfaces are recurring phenomena in solids. Grains meet each other; mix-
tures of immiscible fluids (e.g., the suspension of oil in water) or of different solid phases exhibit junctions.
Typical examples in solids are X-interfaces between austenite and martensite, ' or junctions arising in long-
period superstructures in AlsTis, r-Al, Ti and Al;Ti (L1,-type) alloys (e.g., Nakano et al., 1999). In metals,
at junctions, atoms are crowded in a geometry in which the minimum of the energy is greater than the one
on the geometry of the bulk. So, junctions are endowed by an excess of energy (a line energy, in three-
dimensional bodies). Such an energy, free energy, may be evaluated experimentally, by using calorimetry
devices, or numerically. When phase-transitions occur within the body, the junctions move according to the
evolution of the interfaces determining them. The material surrounding the interface exerts a force on it,
which can drive or obstruct the interface itself. Such an interaction, called also configurational force, is

" Tel.: +39-0-6-44585276; fax: +39-0-6-4884852.
E-mail address: mariano@scilla.ing.uniromal.it (P.M. Mariano).
! See Ruddock (1994) for the theoretical questions arising in the case of presence of X-interfaces.
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expressed through Eshelby’s tensor (Eshelby, 1975) whose validity in non-conservative setting has been
proven by Gurtin (1995) 2 in the case of simple material. Gurtin’s argument is substantially based on the
requirement of the invariance of the power under re-parameterization of the interface and on an appro-
priate version of the second law.

In 1999, I indicated some elementary corollaries to Gurtin’s theory within the setting of multifield
theories describing the influence of the microstructure (or substructure) of the material on the gross me-
chanical behavior of the body (Mariano, 2000). The presence of such substructures is evaluated by as-
signing order parameters to each material patch. They are elements of some manifold .# and represent the
geometrical model of the substructure itself. Basically, they are considered as observable quantities. So,
interactions must be associated to them. The representation of such interactions depends on the geometrical
properties of .#, in particular on the possibility of defining on the manifold a physically significant con-
nection (Capriz, 1985, 1989, 2000), i.e. a manner of constructing covariant gradients.

When such a connection exists, the substructural interactions may be decomposed into microstresses and
self-forces. In this context, the explicit expression of Eshelby tensor must be augmented by an appropriate
product of the covariant gradient of the order parameter with the microstress, and the result of the product
is a second-order tensor, whatever the tensor rank of the order parameter is.

This modified Eshelby tensor may be a useful tool even for evaluating the behavior of interfaces or
cracks within the setting of direct models of plates and shells.

An analogous result may be considered for the surface Eshelby stress. It can be defined when surface
stress measures are defined on the discontinuity surfaces, considered like thin domains capable to suffer
shear.

Simha and Bhattacharya (1998) have studied the expression of configurational forces acting on junctions
in two-dimensional simple bodies. Their result includes terms representing limiting values at the junction of
the interactions in bulk and interfaces surrounding the junction. Their work suggests to develop an anal-
ogous analysis within the context of multifield theories on the basis of the quoted modified expressions of
bulk and interfacial Eshelby tensors.

This is the simple goal of the present paper. The influence of inertial effects is also studied.

As in Simha and Bhattacharya (1998), the two-dimensional case is considered. It is the simplest one
and allows one to underline clearly the contribution of microstresses and self-forces (relevant to the
material substructures) to the expression of configurational force driving the junction during phase tran-
sitions.

The result within the setting of multifield theories presented here allows to analyze, among other things,
the behavior of plane junctions among interfaces in directed models of plates (see, e¢.g., Antman, 1995)
made of materials undergoing phase transitions, as for example shape memory alloys.

The three-dimensional case will be presented later. Technically, it is more difficult than the two-di-
mensional one. The junction is line endowed not only by line tension and shear but also by an additional
line microstress and line self-force. Such additional generalized line measures of interaction enter in the
general expression of configurational forces acting at the junction.

Conceptually, the passage from the two-dimensional to the three-dimensional case implies another step
in understanding the behavior of junctions. By inspection of the sole balance equations at the junction
(involving both the line measures of interactions and the limiting contributions of bulk and surface ones), in
fact, it is possible to prove the possibility for the line free energy to assume negative values. This is in accord
to Gibbs’ conjecture on the energetic behavior of junctions. This could also have consequences on the
analysis of the stability of grain substructures at junctions.

2 Detailed analyses of the applications of Eshelby tensor in various physical circumstances can be found in (Maugin and Trimarco,
1992, 1995).
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Remarks on the notation: In the following, if 4 is an (n + 1)-covariant and m-contravariant tensor and B
is an n-covariant and (m + 1)-contravariant tensor, the product 4 x B furnishes a 1-covariant and 1-con-
travariant second-order tensor, i.e. (4 * B)v = w, where v is a vector and w a covector. Moreover, in the
case in which 4 is (n + 1)-covariant and m-contravariant and B is n-covariant and m-contravariant tensor,
the product A B furnishes a covariant vector as result. Additionally, w* v = wxv.

2. Configurations

As anticipated in Section 1, to each material patch P, the pair (x, @) is associated. x is the placement
within the Euclidean space & (which is considered two-dimensional in the present context). ¢ is the order
parameter, a n-covariant, m-contravariant tensor belonging to .#. It is the geometrical model of the ma-
terial substructure. Typical examples are the following:

e () may be a scalar-valued field defined on the whole body. So, the order parameter may represent the
void volume fraction in porous materials (Nunziato and Cowin, 1979), the volume fraction of a material
specie in liquid or solid mixtures, and so on.

e (¢ may take values in the projective plane and be a representation of the orientation of straight molecules
in nematic liquid crystals or in smectics (Ericksen, 1962; Capriz, 1995).

e (¢ may be a second-order symmetric tensor. So, it can represent the local deformation of big molecules
(Mindlin, 1964) within an indistinct matrix or it can be the second-order approximation (the dipole one)
of the microcrack density distribution in microcracked bodies (Mariano and Augusti, 1998).

e The whole range of direct models of structural elements such as plates, shells or rods (Antman, 1995;
Villaggio, 1997; Ericksen and Truesdell, 1958) is a collection of special cases of multifield theories.
Throughout the paper, .# will be considered finite dimensional and paracompact but, of course, models

in which ./ is infinite dimensional are possible, as in the case in which, e.g., an entire distribution on some

set of directions is assigned to each material patch.

In any case, with these premises, the physical configuration of the body B is given by mapping K defined
by

K:B— & x ., (2.1)

(B3PS (x, ), (2.2)

K, (B) = % is the apparent configuration. The mapping K. is an homeomorphism.

Of course, for every P belonging to B, x(P) = K,2(P), ¢(P) = K ,(P). Given two arbitrary configura-
tions, say K; and K, it is assumed that the mapping K = K; o K| ! is continuous and piecewise continuously
differentiable.

Take, at this point, a reference apparent configuration 4 and consider it endowed by an atlas of co-
ordinates {X}. In particular, I assume that Z is a finite union of fit regions in Noll’s and Virga’s sense; °
namely 4 is the finite union of bounded sets of & which are regularly open * and possess finite perimeter of
zero volume measure.

Given a point X on 4, its current placement is given by x(X) = K,:(X), and it is assumed that K> is
orientation preserving, namely that det F > 0, where F is the gradient of deformation.

3 See Noll and Virga (1988) for a detailed explanation of the principal properties and of the role of fit regions in mechanics.
4 A set of the Euclidean space is called “regularly open” when it coincides with the interior of its closure.
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A motion of the body will be described by fields
X(+,") : B x [0,d] — &, (2.3)

o) : B x10,d] — M (2.4)

in a way so that the current position of a particle X € # at time # € [0,d] is given by x(X, #), while the
current value of the order parameter is ¢(X, ¢).

So, velocities x and ¢ may be defined and Vel indicates the space of pairs (X, ¢). Among all the possible
velocity fields, the rigid ones play a special role in the following developments. In order to define them,
consider a time-parameterized family of rotations represented through their characteristic vector, namely
q(¢), the rigid velocity X, of the placement x(X, ¢) is given by

Xrig = (/) + 4 % (x — X¢), (2.5)
where c(¢) is the translation velocity and x. the position of the center of rotation.
After a rotation, the order parameter can be expressed by series expansion as

doy
dq

Pq = 0(X) + a+ o(lal’)- (2.6)

4=
Time derivative of Eq. (2.5) implies (neglecting higher order terms)

_doy

=g | G=20 2.7)

q=0

where do,/dq|q_o = a, obviously.

Egs. (2.4) and (2.6) characterize completely the rigid body velocity fields. Assuming the possibility of
defining the covariant gradient V¢ (here V is the gradient with respect to X), in the following J;will indicate
the set whose typical elements are of the type (x, F, ¢, V). While J;(Vel) the set whose typical elements are
of the type (x, F, ¢, V).

The remarks presented up to this point about configurations may be substantially adapted to every
ambient Euclidean space (one, two or three dimensional). Some special choices, which are relevant to the
situation studied here, need to be specified.

As declared previously, the apparent reference configuration 4 is two dimensional. I assume that % is
divided into N sub-regions %; by N open regular curves I'; defined by functions

r;:[0,5] = 4, 0<4 <o (2.8)
such that

ri,]=1 Vs€]0,5], (2.9)

() £0 Y€ [0,4], (2.10)

ri(a)) = 7, (2.11)

r;, and r; ,, are linearly independent. Each 4, is a fit region.

It is worth noting that in each %;, the nature of the order parameter ¢ is the same. No mixture among
different types of substructures are considered.

In Eq. (2.11), _# represents the junction, which is (in the present case) a point in the plane and belongs (as
an assumption) to the interior of 4.

The tangent field #; to each I'; is given by
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4i=1,, (2.12)
while the curvature vector /4; is given by

hi =1, (2-13)
and the Gaussian curvature # by

£ =h; -n, (2.14)

n; being the normal to I';.

In the following, I will consider the curves I'; as discontinuity curves for some field. Indicated with e
arbitrarily, one of these fields, it is assumed e € C” (% \ UL r ,-), for appropriate  n. The limiting values of
e at each curve (indicated with e™ and e~) are defined by

e = lilré(x +en;, /), (2.15)

where ¢ is a real number.
The jump [e]; at the curve is thus given by

le], = ey — e (2.16)

The following relation holds true: [ejes] = [e1](e2) + (e1)]es], where (e) = 1(e™ + 7).

I assume that all field suffering jumps at I';, for all choices of ““i”’, considered in the sequel of the paper,
have finite jumps and they may be eventually singular at the junction only.

Moreover, such discontinuity curves are considered as coherent, i.e. not only

F(I-n, ®n) =0, (2.17)

where I is the second-order unit tensor, as in the classical case of coherent discontinuity surfaces in simple
materials (Gurtin, 1993a), but also

[Vel,(I-n;®n;) = 0. (2.18)
Of course, Eqgs. (2.17) and (2.18) implies F; (I-m;®n;) =F, (I-n;®n,) and (Vo) I—n,®n;) =

(Vo) (I —n; ®n;); so, F will indicate in the following indifferently F; (I —n; ® n;) or F; (I —n; ® n;) and N
indifferently (Vo) (I —n; ®n;) or (Vo) (I —n; @ n,).

By coming back to e, now, since e can be singular at the junction, some technically clever devices need to
be used in applying the Gauss theorem to the divergence of e.

To explain this claim, consider a disc D* of radius R, centered at ¢ and included in 4, i.e. D* C %4, and
another disc D, of radius r < R centered at 7.

The integral of Dive on D* can be defined, when e is a vector field 6 as’

DivedA¥ lim DivedA. (2.19)

D* r—0 D* \Dr

Now, the Gauss theorem implies

N
/ DivedA = e-mdl—Z/ [e]l.-n,«dl—/ e-md/, (2.20)
DA\D, aD* ‘=1 Jrin(D*\D,) oD,

5 In the following, it will be only necessary to consider n equal to 1 or, at most, to 2.

¢ For higher-order tensor rank fields, Eq. (2.18) should hold for single components.

7 In the sequel of the paper, integrals on domains containing in their interior the junction must be considered in the sense of Eq.
(2.19).
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where m is the normal to dD* U 0D,. Thus, letting r to zero, the following relation holds true:

N
/‘DWem\: e-mdk—E:/‘ e],-m;dl — lim [ e-mdl (2.21)
- oD+ =T Jrinp* =0 Jop,

Moreover, I assume that all fields considered in the sequel of the paper have sufficiently degree of
smoothness to assure the existence of the limit, lim,_, of some integrals on D, or its boundary.

Eq. (2.21) is the basic tool for deducing balance equations from the general expression of the power
performed by interactions associated to both placement and order parameter fields.

Note that where the discontinuity lines I'; move within % with normal velocity %; (it will be defined in
the following) then, by the Hadamard theorem,

%], = —U,[F],m;, (2.22)

[¢](i) = _%i[vm](i)nb (2.23)

Obviously, when %; = 0 the velocity fields x and ¢ are continuous across the ith line.

3. Balance of standard interactions

As stated by Eq. (2.1), the order parameter ¢ is considered as an observable quantity. An observer makes
two different ideal measures to recognize both the placement and the microstructure of each material patch.

Moreover, interactions should be added to each measurement because they are related to different
“kinematical” or “‘configurational” mechanisms. Such interactions can be evaluated through their con-
tribution to the overall power performed during mechanical processes.

The power 2 is a real functional defined on J;(Vel); in particular, the power performed on a part 8 " of
4 is given by a mapping

yg* :Jl(Vel) —>,%, (31)
which is decomposed into external and inner contributions, °* and 2™, respectively:
P =P — P, (3.2)

Now, a problem is the explicit representation of 2 and 2™.

Since (%, F, ¢, V) is the typical element of J,(Vel), it is necessary to consider measures of interaction
acting on each component of (X, F, ¢, V). In particular, the following measures of interactions are
considered:

Interactions on %"

(a) External interactions relating 4* with the surrounding environment in which is contained including

the rest of the body

b bulk forces expending power on x (e.g., gravitational forces)

p bulk “forces” expending power on ¢ (electromagnetic fields on microstructures)
t boundary traction expending power on X (tension)

7 boundary generalized “traction” expending power on ¢ (generalized tension)

(b) Inner interactions

S zero stress
T Piola—Kirchhoff stress tensor

8 With the term “part” I indicate a subset of 2, which is also a fit region.
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z self-forces
& microstress
Interactions on | J\, I'; N 0A"
(¢) External interactions
¢(; traction at I'; N 0A”
{;) generalized traction at I'; N 04"
(d) Inner interactions
T line stress on I'; (vector quantity)
Z;y line self-force on I'; (tensor quantity of the same rank of ¢)
S(iy line microstress on I'; (tensor quantity of the same rank of ¢)
A tetrahedron argument, analogous to the classical one stating that

Tm =t ato%" (3.3)

allows us to write
Sm=r1 atoHf" . (3.4)
Moreover, it is necessary that the following equalities hold true at the intersection of each line of dis-
continuity with the boundary of #™:

T(i) = f(,-) at I';N 69}*, (35)

Now, consider a part #* of % containing the junction in its interior; 2% and 2™ have the following
form:

N
.@3;5:/ (b-x+ﬁ-¢>dA+/ (5t o)+ 3 (E 5+ 00)| (3.7)
RB* oRB*

i=1 0B NI

N
?}2&:/ (s«x+T~F+z-(p+<¢-v(p)dA+Z/ (Tw - B4 Siy - Ni + Zy - ) dl
RB* i=1 BNl

+ Z/%*mri(<T>ini . [X]: + <5p>ini . [(P]l) dl. (3.8)

To derive balance equations from the explicit expression of the power, it is assumed:

(Al) 24 =0, for every choice of #* and of the velocity fields x and ¢;

(A2) ?/";t =0, for every choice of 4" and of rigid velocity fields.

Some analytical calculations need to be developed to be able to apply Al to Z. Insertion of Egs. (3.3)—
(3.8) into Eq. (3.2) and the use of Gauss theorem lead to

N
@W:/ ((b—s+DiVT)-X+(ﬂ—z+DivV)-gb)dA+Z/ (1Tl +0.70) -5
@ = Janr

+ ([ = Zoy + 0.50) - </'>,-*>dl +lim [ (Tm-x+%m-¢)d!
= oD,
N
li (T,«-'.i yi.'#) . .
+rlf(}2 G X; =S @; ((W\Dr)ﬂwr)mrl
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Of course, in Eq. (3.9), the disc D, has been chosen as in Section 2 to be fully contained in 4* in a way
such that D, N0Z* = .

Note that, since the velocity fields X and ¢ are considered to be not singular at the junction, the following
relations hold true:

lim [ (Tm %+ %m-¢)dl = (lim/ dez) X+ <lim ymdl) “$, (3.10)
=0 Jap, =0 Jaop, =0 Jop,
N N
lim (T(,-) X+ S - ) = | im ) Ty Xy
= (((%*\5,.)QGD,.)F|F, T ((#*\D,)nOD,)NT;,
N
+ | lim S(,—) : ¢f’ (311)

r—0 4

i=1

(#°D,)neD,)Nr;,

where X, is the velocity field calculated at the junction and ¢ , is the time rate of the order parameter at the
junction itself.
Thus, taking into account Egs. (3.10) and (3.11), Al implies the following balance equations:

b—s+DivT =0 in 4, (3.12)
p—z+Div¥ =0 in 4, (3.13)
[T](i)n,- + 8Jn1) = 0 on F,‘, (314)
[5”]@11,- —Zy + 65S(,-) =0 onl, (3.15)
N
lim / Tmd/ + "1y, =0 at.Jg, (3.16)
" oDy i=1 ((.%*\B,)maD,.)mFi
N
lim gmdl+Y S, =0 atg. (3.17)
" oD, i=1 ((.%*\10),.) maDr) nr;

The consequences of A2 can be deduced taking into account that
/(s-x+T-F+z~¢+y-v¢)dA (3.18)
-

should vanish, for every choice of 4", and for every choice of rotational velocity ¢, where x and ¢ are
chosen according to Eqgs. (2.5) and (2.7).
The substitution of Eqgs. (2.5) and (2.6) into Eq. (3.18) and the application of A2 lead to °

s =0, (3.19)

° In Eq. (3.20), the superscript “t” means transposition defined on tensors of rank greater than or equal to 2 as follows:
A'v =VA.
For every vector v and tensor A. Of course, A' coincides with AT when A is a second-order tensor.
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eTF' = az+ (Va)'7. (3.20)

Of course, if T'and S are not singular at the junction (as will be assumed in the following) Egs. (3.16) and
(3.17) reduce to

N
lim [ Tmd/+) Ty(, =0 at .z, (3.21)
= oD i=1

N
lim/ Smdl+ ) Sy|,=0 at ¢. 3.22
. ; 0| (3.22)

4. Balance of configurational interactions

The discontinuity lines move within the body when phenomena like phase transitions occur. In this case,
the representation function of each line is of the type r(s,7), i.e. it depends on time, so that the velocity of
the line in the plane is given by

u=or. (4.1)

Note that only the normal component of u to I

U=u-n (4.2)
is intrinsic. '°
The movement of the lines I" implies the need of considering %" as varying under time; so 8" = %"(¢).

Moreover, %" can be also chosen in a way such that its boundary 0%" can be parameterized by arc length u.
If X = X(u, ¢) represents 048" (¢),

v=0,X(u,?) (4.3)
is the velocity of the boundary 04" whose normal component is given by
Y =v-n (4.4)
When %" is deformed, the velocity of the boundary is given by

vV =x(X(1, ), 7) = % + Fv. (4.5)

An analogous relation holds true for the time rate of the order parameter

Do = ¢(X(u,4),4) = ¢ + (Vo)v. (4.6)
From analogous calculations, the current velocities at the interfaces I" are given by

i =x* + Ffu= (x) + (F)u, (4.7

Dip = ¢ + (Vo)*u= (%) + (Vo)u. (48)

101 Eq. (4.2) the subscript “i”’ is omitted because Eq. (4.2) is referred to each I';.
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The kinematics of discontinuity lines (including the junction) just described is a mechanism independent
of the overall behavior. Such a relative motion with respect to the rest of the body implies interactions
because the rest of the body can obstruct or drive the interface and the junction. In addition, the junction is
assumed to be only one point during the whole evolution.

The interactions arising during the evolution owing to the change under time of a part of the reference
configuration are also called configurational forces (Nabarro, 1985; Ericksen, 1995).

I will consider the following configurational measures of interaction:

(a) Bulk configurational forces

P modified Eshelby tensor

¢ inner configurational body force

¢ external configurational body force
(b) Surface configurational forces

¢; line configurational stress at I';

f; inner line configurational force at I';

(¢) Configurational force at the junction

d,

I assume that
e P has finite jump at each I'; and can be singular at ¢,

e g and ¢ are such that

/M) (g + ¢)dA = lim (g +e)dA V7. (4.9)

=0 Ja (/)\D(0)

The same property holds true for f, so

/ f, dl = lim f.dl V¢ (4.10)
ri(6)n# (4) =0 Jrion@ (/)\DH(2)

e ¢ is not singular at #.

Since ¢ and f are inner forces associated to the independent kinematics of the interfaces, they do not
perform explicit power except in the case in which the power itself is evaluated by an external observer not
fixed, rather migrating with constant velocity v and evaluating the position of the moving reference control
volume %*(¢). The same situation occurs for e.

Indicating by W*(%"), the power performed on %*(¢) by all interactions with respect to the migrating
observer just introduced, W*(#") can be expressed as

W*(,@*):/ (Tm-V—i—Sﬂm-D;(p—&-Pm-(V+V*))dl+/ (b-x+f-¢)dA
0% (4) B*(4)

N
+ / fiyy - vid/
; ri(e)n#*(¢) v

ri(no# (o)

N
+/ (g+¢) vdA + Z(Tm -0; + i) - D)
() —

i=1

N

+ Z(C(i) “(u+ V*))

i=1

+d, v (4.11)

(A" (£)

W*(#") (where Egs. (3.3)—(3.6) have been considered) accounts for the power performed by ¢, ¢ and d , on
the velocity v* of the material observer evaluating %" (7).
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Of course, to be physically consistent, W*(%") should be independent of the choice of the velocity of the
material observer. '' Such a requirement implies that

N
Pmdl+/ + ¢)dA + / wdl+ ) ei
</m*(/) .W(z)(y ) ; ri(ona* (2) Z

From Eq. (4.12), since v* is arbitrary, the integral configurational balance follows:

P +d,,> =0, (412)

N
Pmdl+/ + ¢)dA + / wdl+ ) ¢ +d =0. 4.13
/ay*(/) z*m(g ) ; Ii()N%* (£) Z Anod#’( 4 ( )
Now, from the Gauss theorem,
N
/ Pmd/ = DivPdA + > / [P],m;d/ + lim Pmd!, (4.14)
B () @ (/) = Jriona () =0 Jop, (1)
N
S e Z / el hch
i=1 Z
N
= Z/ 0,¢dl + ZC(i) Vs (4.15)
Ti(/)NA* () i—1

Eq. (4.15) is a consequence of the previous assumption that ¢ is not singular at the junction.
Since Eq. (4.13) should be valid for every choice of the control volume %", insertion of Eqs. (4.14) and
(4.15) in Eq. (4.13) leads to the following localized balance of configurational forces, namely

DivP+y+c=0 in 2, (4.16)

[P](i)nf +fi+0,c)=0 onl}, (4.17)
N

iy | Pmdl+ Z}:c@(f +d, =0 at . (4.18)

5. Configurational force at the two-dimensional junction

Now, the determination of the explicit expressions of configurational interactions needs to be made.
Such expressions can be done in terms of standard bulk and surface stresses, free energies and geometrical
ingredients like the deformation gradient and the gradient of the order parameter.

The result follows from the exploitation of an isothermal expression of the second law of thermo-
dynamics stating that

! The requirements of arbitrary choices of the velocity fields are considered here to be valid in the absence of relativistic effects, i.e.
when problems related to the existence of a limit speed of transfer of information can be neglected.
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d . .
&{free energy in £ (¢)} — W(#*)<0. (5.1)

Here, W (%) is the power expressed with reference to a fixed material observer (v* = 0); so, it has the
following form:

W(ﬂ*):/ (Tm-V+Vm~D;<,0+Pm-v)dl+/ (b-x+p-¢)dA
B*(¢) B*(¢)
(Tw - 0 + Si) - Do, + €y - W)

+ (5.2)

'MZ‘ g

I
—_

ri(0)noB*(£)"

I

On the basis of the experimental physical evidence, a bulk free energy density  and a line free energy ¢
should be considered. So that, the time rate of the free energy has the following explicit expression:

d d d
— {free energy in #*(¢)} = — dA+—/ dA. 5.3
1 win g =g | wanvg [0 (53)

In particular, I assume that
e i/ is smooth on %\ vazl I';, suffers finite jump at each I'; and could be singular at the junction;
e ¢ is smooth on (U, I').

Now, the standard transport theorem states that

d , N
—/ x//dA:/ xpdA—s—/ lp"le—Z/ [mm%idz—/ Yy dl.
ds B*(£)\Dr(7) 2 (4)\Dr(7) 0" (7) i=1 JTi(ON(B*(£)\Dr(4)) D, (7)

(5.4)

Taking the limit » — 0 and considering previous assumptions, the following equation holds true:
d . a
—/ YdA = ¢dA+/ Yy dl — Z/ W), %:dl — lim Yy dl. (5.5)
dz Ju (%) 0% (4) = Jriona () =0 Jap,(s)

Analogous calculations on the basis of standard transport theorems for integrals calculated on lines
evolving under time furnish

d
< / $pdl = / (¢° — p£u)dl + $(ug - 1;)
A7 Jrona o) F(On# (2

In Eq. (5.6) ¢° represents the normal time derivative of ¢, following the trajectories. '> To simplify
calculations, we now set

ri(Hnos(2) d(ug) - ti)’j' (5.6)

Wi(#") = / (Tm-v+ %m-D,¢ + Pm - v)d/, (5.7)
o (4)
]\7 ~

VVQ(@*) — Z(T'(l) . ﬁi + S(z) . D/(Pi + C(l-) . ui) Ti(HNo#* (1) (58)
=1

The insertion of Egs. (4.5) and (4.6) in Eq. (5.7) and of Egs. (4.7) and (4.8) in Eq. (5.8) leads, respectively, to

12 More precisely, ¢° is defined as follows: ¢°(x,t) = dg(x(f), B)/dB|ps, where x(p) satisfies dx/df = % (x(B), B).
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Wi(#") :/ (Tm-X+9m- ¢+ (P+F T+ Vo'« )m-v)d/, (5.9)
B (1)
N L]

Wz(%’*) = (T(i) : <X>, + S(t’) : <¢>i + (C(i) + <FT>iT(i) + <v§0t>i*s(i)) : u)‘ri(/)maw(;)- (5'10)
=1

I

For physical reasons, W(#") must be independent of the kind of parameterization of the boundary of
#°(#). In Eq. (5.9), the term depending of the parameterization is the product (P +F'T + Vo' +.%)m - v
because only the normal component of v is intrinsic. As a consequence, it is necessary that

(P+F'T+Ve's«S)m-i=0 (5.11)

for every vector i chosen to be tangent to 04", i.e. (P + F'T + V¢' * )m is purely normal; thus, it must be
expressed by

P+F'T+ Ve *xY = ol, (5.12)

o being a scalar quantity and I, the unit second-order tensor. Thus, W;(%") reduces to

B (/)

Wl(,@*)/W</)(Tm~x+y’m.¢)dl+[ w7 dl. (5.13)

Moreover, in Eq. (5.10), the term ¢(;) + <FT>I.T@ + (Vo'), ;S@ is a vector quantity and can be decomposed
in its tangential and normal components to each I';. Thus, omitting the index ““/”” (in this way, under-
standing that the calculations developed hold for each I';, ““i” fixed), it follows that

¢+ (FOT + (V') &S = ot + pn. (5.14)
Now, since

(F'T = F'T + ((F)n - T)n, (5.15)

(V') %S = N'4S + ((Vo)n - S)n, (5.16)

the configurational stress vector ¢ may be expressed by

c=ot+jm—F'T—N'%S, (5.17)
where
pg=u—Fn-T—(Ve)n-S. (5.18)

Thus, inserting Eq. (5.17) in Eq. (5.10) and once more using Egs. (5.15) and (5.16), W5(4") can be written
as

N
W (%") = Z(%‘) () - w) + By + Ty - (%), + Ui(F) yny) + i) - (@), + UV @) ) Fi(Ones ()"

i=1

(5.19)

On ecach discontinuity line I';, by applying the Gauss theorem,
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(ﬁ(i)%i + T - (<X>z + (F) (i)n(i)) + S0 - (<90>1 + %;<V¢>(i>ll(,-))) ri()no#* (¢)
— [ Bt T (504 ), S () + U (T )L+ iy ¥+ T+ ()
Ii(0nos* (4)

i

+ 4 Fm); + S - () + (N o)n),)| . (5.20)

Moreover, since i =

/ 9, () dl =/ U0, (c) - m) + € -8Jn(,->)dl+/ (B0, ) dl, (5.21)
ri(HN#* (1) i (On%*(4) NB* (4)

/ 0.(Ty - (%) + 2 (Fyn),) dI = / (0T - (%), +0,Ty - U (Fyymy + Tig - B
nB* (¢) (6N (¢)

— A0 F (T - 1) dl, (5.22)

[ o (@) auwom)ai= [ (050 3)+ 050 1(Tohyno + S -
ri(/n#* ri()n#* (/)

— £0NYSe - 1) dl, (5.23)

where
Py = O.((%) + U (F)n), + £, F(, Ty - 1), (5.24)
= 0,((¢) + U(Vp)m), + £;)Njy + Sy - 1y (5.25)

Of course, from Egs. (5.24) and (5.25), it follows that p, = 9,x;" and ¢, = 9,¢;" at each discontinuity line.
Thus, by taking account of Egs. (5.13), (5.19) and Eqgs. (5.20)—(5.23), and also using the Gauss theorem
on the first integral of Eq. (5.13), W(%") can be written as

oD,

W(,@*):/ a)"le+/ (T-F+z-¢+9-Vo)dv+ hm Tm - xd/
0B (1) #(4)

N N

+Z/ 1o, dl + hm/ ym-qodl+Z<a,-(t-u)|ri(/)mw*(,))
i=1 J (0 (0) an, —
N
Z/ (@) +%(Vo)n dl+Z/ 0, dl
1 nNg* (¢ NAB* (¢
N N
Z/ (c-O.n) ?/dl+2/ T-podl—Z/ AUFTT - tdl
1 HNAB*( =1 Jri(Hn#*(¢)
N

_Z/ Tn Fnl, %d1+2/ S-q°dr
P NB* (¢ i=1 JTi(/)N#"(7)
N
2 v
+

M/N*S tdl—Z/ yn (Vo)n @/dl+z
1)NA*(

W - ((x), +W/<F> <f>)+5<i>'(<¢>i+%f<V<P><i>“<i>))|/~ (5.26)
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In this way, the dissipation inequality becomes

/ (lp_T.F_z.qb_y.w)dH/ (W — cu"/dl—Z/ (@)
B () 0B (4) N (¢
N N
+ dl + - / (8,)(,')1- . n[%[dl
z1: 12:1: (6N (¢)

N
—Z/ (¢; - O,n) J//dl—hm/ (Y7 +Tm-x+ Sm- (pdl+Z/ ¢’
T Jriona (o) @ (¢

i=

HNeB*(4)

—T-p"—S-q" — ji;,0,%;)dl — Z/ (p—F'T-t—N'%S- 1) A dl

N N
- Z/F( - [y —Tn-Fn—%n- (Vw)“}(i)%fdl - Z((f)z(ft W) + fiy % + Tty - ((x)
i=1 i

i=1

U, + S - ((6) + U (Vom))| < 0. (5.27)
s
Since Eq. (5.27) must hold for every choice of the velocity fields % and t - u, it follows
V=, (5.28)
o= ¢. (5.29)
As a consequence, the modified expressions of configurational stresses are
P=yl-F'T-V¢'*7, (5.30)
¢c=¢t+pn—F'T—N'4S. (5.31)

Expression (5.30) has been already deduced in Mariano (2000). In Egs. (5.30) and (5.31), the terms
Vo' % and N'*S represent the contribution of the interactions on the substructure to configurational
stresses.

Note that such contributions are related only to the possibility of recognizing microstresses associated to
the order parameters. When microstresses are absent (owing to the absence of a connection by which V¢ is
defined in covariant way) the above mentioned contributions disappear. This is the case of internal variable
models ' in which the thermodynamical affinities associated to the internal variables do not perform ex-
plicit working and balance equations are not associated to them. In this last case the Eshelby tensor is not
modified (P reduces thus to I — F'T) and the internal variables influences only the explicit expression of
the free energy.

In the general case of multifield theories, otherwise, expressions (5.29) and (5.30) holds in their complete
form.

Now, some addenda of Eq. (5.29) may be grouped separately in order to simplify them. In particular,
taking into account Eq. (5.30), set

N
Ay = Z/ (m; - [P + (¢ “F'T.1— N'is. t) £+ (D,0), mi+ (c- On),),dl. (5.32)
i=1 Y Ti(/)NA*(7) !

13 See the standard model of Coleman and Gurtin (1967).
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Thus, considering that

on = —4t, (5.33)
it follows that

c-@dn:—<¢>—FTT-t—N‘;kS~t)£. (5.34)

Consequently, substituting Eq. (5.34) into Eq. (5.32) and taking account of the configurational balance
(4.17), A, can be expressed as

N
A =— / f-m),,%dl. 5.35
I Z: A (f-m), (5.35)
To do other simplifications, consider that
T- %<F>n|j =T-(Fyv, =T -(F)t(vy-t), (5.36)
S - %(Vq))nu =S-(Vo)v, —S-(Vo)t(v, - t). (5.37)

Consequently, taking into account Egs. (5.36), (5.37) and (5.31), the term in Eq. (5.32) associated with
the junction can be written as

Z (8- Us) + 1y Ui + Ty - ((X) + U(F)n), + Sg - ((9) + % (Vp)n),)

i=1 7
N N
= 2o (0 + (B, -8 (90 + (Vo] +D (s e (5.38)
i=1 p,
Consider also that, the term
/ Y7 +Tm-x+ %m- ¢)d/ (5.39)
)
may be written as
/ (v-Pm+Tm- (X+Fv)+%m- (¢ + Vov))dl. (5.40)
)
Moreover, since v is not singular at the junction and approaches v, when r — 0,
N N
ling (v-Pm)dl + Z(v/ . c,-)|y = (hng/ Pmdl+Zci|j> Vy=—d,;-vy. (5.41)
r— D, = g r— oD, Py

As a consequence of previous developments, the mechanical dissipation inequality can be written as

/ LT s Vs Y / oy EUA =D (T () + (B

i=1

+So - (@) +(Vo)vy))| +dy- V/JrZ/ " —T-p"=5-q"— adu
Y N

—Z (o ))dl—hm (Tm - (X + Fv) +.9m - (¢ + Vov))d/ < 0. (5.42)

oD,
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Inequality Eq. (5.42) can be further reduced by considering that, to within terms of the type o(r),

lim [ (Tm- (% +Fv))d/ = ((x) + <F>vj)‘ lim [ Tmdl, (5.43)
r—0 aD, g =0 D,

lim [ (Ym-(¢p+ Vov))dl = ((¢) + <V(p>vj)’ : lim/ Smdl. (5.44)
r—0 D, g r=0 oD,

The proof of Eq. (5.43) can be found in Simha and Bhattacharya (1998, p. 2344); the one of Eq. (5.44) is a
simple adaptation of that.
Consequently, by using the balance (3.21) and (3.22),

N

D (T - (%) + (B)v,), 80 (@) + 2(Tp)y,))| +lim | (Tm- (x4 Fv)

i=1 =0 Jap,

+9m- (¢ + (Vo)v))d!

= ((x) + <F>Vf)|f . <lim/a Tmd/ + ZT(,-)

r—

/> + (@) + (Vo)v,)l, - <lim Smdl

r—=0 [a D,

£y f> “o (545

i=1

Taking Eq. (5.45) into account, since Eq. (5.42) must be valid for every choice of %", the following
localized dissipation inequalities can be obtained, namely

y-T-F—z2-¢—%-Vo<0  in 2, (5.46)
S —T-pP"—S-q"—Z- 0 —gdU+fU<0 atT, (5.47)

Now, assume that the bulk free energy and the interfacial free energy have, respectively, the following
constitutive structures:

Y =y(F, 0,Vo), (5.49)

¢ =¢(p,q,0,0%), (5.50)

where 0 is the limiting crystallographic orientation of the interfaces and is such that 6° = 9% (Gurtin,
1993b).

By calculating the relevant time derivatives of iy and ¢ and inserting them into Egs. (5.46) and (5.47), the
validity of Egs. (5.46) and (5.47) for every choice of the velocity fields involved in their expressions implies

T=0wy, z=0,0, & =0, (5.51)
T=0,p, S=0,, Z=0,0 (5.52)
I = 0y, (5.53)
—(Ff-m% >0 atl (5.54)
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Now, the driving force at the ith interface dr, is given by
dri - 7f,‘ . n[, (556)
while the driving force at the junction d , is given by
d, = —d,. (5.57)

Consequently, the use of configurational balances (4.17) and (4.18) and the results Egs. (5.30) and (5.31)
lead to

dr=n-[YyI-FT-Vo'«F|n+ (p—F'T-t—NS-1)d+0,in atl (5.58)
N

d, = lim (WI-F'T - Vo' .%)mdl + Z(qSt +fn — F'T — N'S), P at ¢. (5.59)
=" Jop, =1

The dissipation inequalities (5.54) and (5.55) allow us to determine the evolution equations for the in-
terfaces and the junction from Egs. (5.58) and (5.59). Since Eqgs. (5.54) and (5.55) must be valid for every
choice of velocity fields % and v, in fact, dr and d , need have structures of the form

dr =dr(e), (5.60)

dy =d,(ev,), (5.61)

where dr is a positive definite scalar function, given by a constitutive relation and d} is a vector function,
given by a constitutive relation and such that d’, -v, > 0.
In particular, a suitable choice for d’; is the following:

&, =d(e)v,, (5.62)

where d’; is a positive definite scalar function given by a constitutive relation.
Possible constitutive choices for dr and d’; are the following:

dr = 6;11" (pa q, (;Div 0)7 (563>

dy, =d,(p.q,0%,0). (5.64)

Moreover, Egs. (5.54) and (5.55) do not exclude a priori the possibility of including in dr and d, rate
effects or higher-order gradient effects.

Finally, by using Egs. (5.60) and (5.62), the evolution equations for the interfaces and the junction are
the following:

drU =n- Yl —F'T—Ve¢'* S |n+ (¢ fFTT~t7N‘iSot)£+6’,,ﬁ at Iy, (5.65)

N
dsv, = linol/ (I —F'T - Vo' ¥)mdl + E (¢t + fin — F'T — N'x5), p at ¢. (5.66)
= oDy i=1 7

6. Inertial effects

When inertial effects are noticeable, the relevant expression of the modified Eshelby’s tensor can be
obtained by considering a mechanical dissipation inequality of the form
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d free energy + kinetic energy} — W(#") <0. 6.1
ds

Here the term “‘kinetic energy” is given by
kinetic energy = 1p|X| + (¢, @), (6.2)

where p is the mass density of the bulk and y is the contribution to the kinetic energy associated to order
parameter ¢. In particular y(-,-) must be such that y(-,0) = 0.

By following a procedure analogous to the one used previously, it is possible to determine the dynamic
counterpart of P, namely P®" (see Mariano (2000), for the complete proof). P%¥" is given by

PO = (Y + JolXI” + 2(0,9) )T~ F'T = Vo' 7. (6.3)

Note that the inertial contribution to the bulk configurational stress is given only by a spherical tensor,
namely '

(301 + 200, 9) 1. (64)

Moreover, if the surface configurational force f is decomposed in its inertial and non-inertial parts, f
and f respectively, f has the following expression (Mariano, 2000, Eq. (4.88)) '°

f* = p(F) & 2)n + (V') #[051) %) — [1(9. 9)] at I (6.5)
Now, by using Egs. (6.3) and (6.5), Eqgs. (5.57) and (5.58) can be written as follows:

dr=n- Kx//—i—%p|)k|2>l—FTT— ' *y]n+ (4; —FTT-t—N%’kS-z)é+&ﬁ+p(<F>[k]%) n

+ (V)£ [0px] ) -, (6.6)
N L]
d, = lim ((n// + Lok + x(o, ¢))1 _FIT - Vo' y)mdz +5 (¢t + i — F'T — N'%S),
=0 Jap, = s
(6.7)

The use of Egs. (5.60) and (5.62) into Eqgs. (6.6) and (6.7) leads to the relevant kinetic equations when
inertial effects are noticeable.
7. Neglecting deformations

When the macroscopic deformations are negligible, Eqs. (5.58) and (5.59) reduce to

dr=n-[Yl — Vo' s Sn + (qs _ NS t);€+ O, — (Von-S) at T, (7.1)

i

d, = lrlg(}/ (lﬁI—V(pt*V)mdl—&-Z(@‘—&- (u—(Vo)n-S9) —NI;S) |j at 7. (7.2)
oD, i=1

14 Other inertial effects can be recognized in Eq. (4.16) where the inertial part of the external configurational force ¢ is given by

" = pFT% + Vo' % {(957) — dpx} (Mariano, 2000, Eq. (3.38)).
!5 Here the Eq. (4.88) in Mariano (2000) is emended of a trivial print error in its last two lines.
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Note that the presence of microstructure within the body implies an articulate behavior of the interfaces
and the junction, even in absence of macroscopic deformations.
As a special case, consider a situation in which not only macroscopic deformations are neglected but also
e the order parameter is a scalar quantity (say it represents the volume fraction of a phase in some two
phase material),
¢ interfacial structure is neglected,
e the bulk Helmoltz free energy i is Ginzburg—Landau’s-like, more precisely

V(0. Vo) =1Vol* +a(p). (7.3)

In Eq. (7.3), o(e) is a double well coarse grained potential and b a material constant. The simplest ex-
pression of a(e) is given by

a(p) = a(l — @2)2 (7.4)

with a some constant.
In this case, T, S, Z, i, ¢, T vanish identically, the bulk microstress is a vector and is given by

S = bV, (7.5)
while the internal force z is scalar, namely
z=4ap(p> —1). (7.6)
Finally, the driving forces are given by
dr=n- [(%b|Vq0|2 + o((p))l Ve ® V(p}n, (7.7)
d, = lim ((%b|w|2 + a((p))l — Ve ® V(p)mdl. (7.8)
=0 Jap,

Note that the driving force at the junction is given by quantity having an expression analogous to the one
of Rice’s integral.
In this case,

dT = (31" (qa @iv 0)7 (79)
dy =ds(q,0%,0). (7.10)
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